Factorization of a 1061-bit number by the Special Number Field Sieve

نویسنده

  • Greg Childers
چکیده

I provide the details of the factorization of the Mersenne number 21061 − 1 by the Special Number Field Sieve. Although this factorization is easier than the completed factorization of RSA-768, it represents a new milestone for factorization using publicly available software.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Kilobit Special Number Field Sieve Factorization

We describe how we reached a new factoring milestone by completing the first special number field sieve factorization of a number having more than 1024 bits, namely the Mersenne number 2 − 1. Although this factorization is orders of magnitude ‘easier’ than a factorization of a 1024-bit RSA modulus is believed to be, the methods we used to obtain our result shed new light on the feasibility of t...

متن کامل

Lecture Notes in Computer Science 4833

We describe how we reached a new factoring milestone by completing the first special number field sieve factorization of a number having more than 1024 bits, namely the Mersenne number 2 − 1. Although this factorization is orders of magnitude ‘easier’ than a factorization of a 1024-bit RSA modulus is believed to be, the methods we used to obtain our result shed new light on the feasibility of t...

متن کامل

Special-Purpose Hardware for Factoring:the NFS Sieving Step

In the quest for factorization of larger integers, the present bottleneck is the sieving step of the Number Field Sieve algorithm. Several special-purpose hardware architectures have been proposed for this step: TWINKLE (based on electro-optics), mesh circuits (based on two-dimensional systolic arrays) and TWIRL (based on parallel processing pipelines). For 1024-bit composites, the use of such ...

متن کامل

An Efficient Hardware Architecture for Factoring Integers with the Elliptic Curve Method

The security of the most popular asymmetric cryptographic scheme RSA depends on the hardness of factoring large numbers. The best known method for this integer factorization is the General Number Field Sieve (GNFS). One important step within the GNFS is the factorization of mid-size numbers without small prime divisors. This can be done efficiently by the Elliptic Curve Method (ECM), e.g. in sp...

متن کامل

Notes in Computer Science 1807

This paper reports on the factorization of the 512–bit number RSA–155 by the Number Field Sieve factoring method (NFS) and discusses the implications for RSA.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012